Package: geostatsp 2.0.6
geostatsp: Geostatistical Modelling with Likelihood and Bayes
Geostatistical modelling facilities using 'SpatRaster' and 'SpatVector' objects are provided. Non-Gaussian models are fit using 'INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>. The 'RandomFields' package is available at <https://www.wim.uni-mannheim.de/schlather/publications/software>.
Authors:
geostatsp_2.0.6.tar.gz
geostatsp_2.0.6.zip(r-4.5)geostatsp_2.0.6.zip(r-4.4)geostatsp_2.0.6.zip(r-4.3)
geostatsp_2.0.6.tgz(r-4.4-x86_64)geostatsp_2.0.6.tgz(r-4.4-arm64)geostatsp_2.0.6.tgz(r-4.3-x86_64)geostatsp_2.0.6.tgz(r-4.3-arm64)
geostatsp_2.0.6.tar.gz(r-4.5-noble)geostatsp_2.0.6.tar.gz(r-4.4-noble)
geostatsp_2.0.6.tgz(r-4.4-emscripten)
geostatsp.pdf |geostatsp.html✨
geostatsp/json (API)
# Install 'geostatsp' in R: |
install.packages('geostatsp', repos = c('https://eborgnine.r-universe.dev', 'https://cloud.r-project.org')) |
- elevationLoa - Loaloa prevalence data from 197 village surveys
- eviLoa - Loaloa prevalence data from 197 village surveys
- gambiaUTM - Gambia data
- loaloa - Loaloa prevalence data from 197 village surveys
- ltLoa - Loaloa prevalence data from 197 village surveys
- murder - Murder locations
- rongelapUTM - Rongelap data
- swissAltitude - Swiss rainfall data
- swissBorder - Swiss rainfall data
- swissLandType - Swiss rainfall data
- swissNN - Raster of Swiss rain data
- swissRain - Swiss rainfall data
- swissRainR - Raster of Swiss rain data
- tempLoa - Loaloa prevalence data from 197 village surveys
- torontoBorder - Murder locations
- torontoIncome - Murder locations
- torontoNight - Murder locations
- torontoPdens - Murder locations
- wheat - Mercer and Hall wheat yield data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 9 months agofrom:4c8b9aef10. Checks:OK: 3 ERROR: 2 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win-x86_64 | OK | Nov 17 2024 |
R-4.5-linux-x86_64 | OK | Nov 17 2024 |
R-4.4-win-x86_64 | NOTE | Nov 17 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 17 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 17 2024 |
R-4.3-win-x86_64 | NOTE | Nov 17 2024 |
R-4.3-mac-x86_64 | ERROR | Nov 17 2024 |
R-4.3-mac-aarch64 | ERROR | Nov 17 2024 |
Exports:conditionalGmrfexcProbfillParamglgminformationLgminla.modelskrigeLgmlgcplgmlikfitLgmloglikLgmmaternmaternGmrfPrecmodelRandomFieldsNNmatpcPriorRangepostExpprofLlgmRFsimulatesimLgcpsimPoissonPPspatialRocspdfToBricksquareRasterstackRasterListvariogvariogMcEnv
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Conditional distribution of GMRF | conditionalGmrf |
Exceedance probabilities | excProb |
Gambia data | gambiaUTM |
Generalized Linear Geostatistical Models | glgm glgm,ANY,ANY,ANY,ANY-method glgm,formula,data.frame,SpatRaster,data.frame-method glgm,formula,SpatRaster,ANY,ANY-method glgm,formula,SpatVector,ANY,ANY-method glgm-methods lgcp |
Valid models in INLA | inla.models |
Spatial prediction, or Kriging | krigeLgm |
Linear Geostatistical Models | lgm lgm,character,ANY,ANY,ANY-method lgm,formula,data.frame,SpatRaster,data.frame-method lgm,formula,SpatRaster,ANY,ANY-method lgm,formula,SpatVector,numeric,ANY-method lgm,formula,SpatVector,SpatRaster,data.frame-method lgm,formula,SpatVector,SpatRaster,list-method lgm,formula,SpatVector,SpatRaster,missing-method lgm,formula,SpatVector,SpatRaster,SpatRaster-method lgm,missing,ANY,ANY,ANY-method lgm,numeric,ANY,ANY,ANY-method lgm-methods |
Likelihood Based Parameter Estimation for Gaussian Random Fields | likfitLgm loglikLgm |
Loaloa prevalence data from 197 village surveys | elevationLoa eviLoa loaloa ltLoa tempLoa |
Evaluate the Matern correlation function | fillParam matern matern.default matern.dist matern.SpatRaster matern.SpatVector |
Precision matrix for a Matern spatial correlation | maternGmrfPrec maternGmrfPrec.default maternGmrfPrec.dgCMatrix NNmat NNmat.default NNmat.SpatRaster |
Murder locations | murder torontoBorder torontoIncome torontoNight torontoPdens |
PC prior for range parameter | pcPrior pcPriorRange |
Exponentiate posterior quantiles | postExp |
Joint confidence regions | informationLgm profLlgm |
Simulation of Random Fields | modelRandomFields RFsimulate RFsimulate,ANY,SpatRaster-method RFsimulate,data.frame,ANY-method RFsimulate,matrix,SpatRaster-method RFsimulate,matrix,SpatVector-method RFsimulate,numeric,SpatRaster-method RFsimulate,numeric,SpatVector-method RFsimulate,RMmodel,SpatRaster-method RFsimulate,RMmodel,SpatVector-method RFsimulate-methods |
Rongelap data | rongelapUTM |
Simulate a log-Gaussian Cox process | simLgcp simPoissonPP |
Sensitivity and specificity | spatialRoc |
Create a raster with square cells | squareRaster squareRaster,matrix-method squareRaster,SpatExtent-method squareRaster,SpatRaster-method squareRaster,SpatVector-method squareRaster-methods |
Converts a list of rasters, possibly with different projections and resolutions, to a single raster stack. | spdfToBrick stackRasterList |
Swiss rainfall data | swissAltitude swissBorder swissLandType swissRain |
Raster of Swiss rain data | swissNN swissRainR |
Compute Empirical Variograms and Permutation Envelopes | variog variog.default variog.SpatVector variogMcEnv variogMcEnv.default variogMcEnv.SpatVector |
Mercer and Hall wheat yield data | wheat |